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Abstract

A polymer in a layered environment is modeled as a directed path in a layered
square lattice composed of alternating A-layers of width wa and B-layers of
width wb. In this paper we consider general cases of this model, where edges in
the path interact with the layers, and vertices in the path interact with interfaces
between adjacent layers. The phase diagram exhibits different regimes. In
particular, we found that the path may be localized to one layer, be adsorbed on
an interface between two layers or be delocalized across layers. We examine
special aspects of the model in detail: the asymptotic regimes of the models
are examined, and entropic forces on the interfaces are determined. We focus
on several different cases, including models with layers of equal or similar
width. More general models of layers with different but finite widths, or with
one layer of infinite width, are also examined in detail. Several of these models
exhibit phase behavior which relate to well-studied polymer phase behavior
such as adsorption at an impenetrable wall, pinning at an interface between two
immiscible solvents, steric stabilization of colloidal particles and sensitized
flocculation of colloidal particles by polymers.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e

1. Introduction

A path in a layered lattice may serve as a model of a homopolymer in a layered fluid, say
of oil and water. If the monomers in the polymer are hydrophilic, then the polymer will
favor conformations with most of its monomers in the water layer. In this case the polymer
is ‘localized’ in the water layer. Similarly, if the monomers in the polymer are hydrophobic,
then the polymer will favor conformations with most of its monomers in the oil layer and the
polymer is ‘localized’ in the oil layer. If the monomers dissolve in both the oil and the water
layers, then the polymer will explore conformations with monomers in both layers and the
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Figure 1. A directed path in a layered environment composed of alternating A-layers of width wa

and B-layers of width wb . The path starts at the origin and ends at an interface between the two
layers. By imposing periodic boundary conditions on the interfaces as indicated by the arrows on
the left, this model is equivalent to a path on a tube with circumference wa +wb . The BA-interfaces
in the lattice are the lines Y = N(wa + wb) for N ∈ Z where the B-layers are below the A-layers
at the interface, while the AB-interfaces are the lines Y = wa + N(wa + wb) for N ∈ Z where the
A-layers are below the B-layers.

polymer is in an ‘expanded’ or ‘delocalized’ phase. If the monomers are repelled strongly by
both the oil and the water molecules, then the polymer may localize at an interface between
the two layers and we say that the polymer is ‘adsorbed’ or ‘pinned’ at the interface.

The basic model is illustrated in figure 1. A directed path giving NE- and SE-steps from
the origin in the square lattice is the basic object in our model. The square lattice is layered
into alternating layers of two types (A-layers of width wa and B-layers of width wb) in the
Y-direction. A directed path starts at the origin in the layered lattice and ends at an interface
between two layers4. Each edge in the path which is in an A-layer is weighted by a Boltzmann
factor a, while each edge in the path which is in a B-layer is weighted by a Boltzmann factor
b. Vertices in the path are assumed to interact with the interfaces between the layers: vertices
in the interface with the B-layer below and the A-layer above (this is the BA-interface) are
weighted by a Boltzmann factor z0. Vertices in the interfaces where the A-layer is below and
the B-layer is above the interface (this is the AB-interface) are weighted by a Boltzmann factor
zw. Generally, BA-interfaces are given by the lines Y = N(wa + wb) for N ∈ Z, while the
AB-interfaces are the lines Y = wa + N(wa + wb) for N ∈ Z.

In this paper we examine the combinatorics and statistical mechanics of the model of
paths in figure 1. We are particularly concerned with the limiting free energy of the model and
with the thermodynamic forces which the path exerts on the interfaces between two layers. If
these forces are repulsive, then they will tend to widen the layers, while attractive forces will
tend to shrink the layers.

Polymers in a lipid–water system have been modeled by self-avoiding walks, random
walks and directed path models. Normally, a polymer (such as a protein) is considered to be
near a cell-membrane and modeled as a walk or path in a layered environment, see for example
references [18, 20, 21]. In these models, there are several phases, including an adsorbed or
pinned phase where the polymer is adsorbed onto the interface between the layers, or desorbed
phases but localized phases of the polymer in either the lipid or the water layer, and finally a
delocalized phase of the polymer over both layers and their interfaces.

4 This condition is a convenient one—one may relax it, but with an increase in the complexity of the solutions. The
phase diagram will not be affected by this.
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Figure 2. A path in a layered environment with wa = 2 and wb = 3. This path starts in the
X-axis and ends at an a AB-interface. It is counted by the generating function g0. The X-axis is a
BA-interface, and the line Y = wa is an AB-interface. These paths can be turned into a model of
paths winding around a tube by introducing periodic boundary conditions which identifies the line
Y = wa with the line Y = −wb .

Studies of a polymer confined to a slit or slab have been carried in [3, 19, 23, 25–28].
These are special cases of the model in figure 1, and are generalized in this paper. Generally,
studies of paths or walks confined to slits or slabs are carried out as models of a polymer
confined between colloidal particles [19], both as directed models [3, 23] with a focus on
the entropic forces in the polymer (see also [22]), and as a self-avoiding walk model from
both a theoretical and a numerical point of view [12–14]. In addition, directed path models
of a heteropolymer in a layered environment have been examined in [5, 6, 9, 15, 16], while
heteropolymers undergoing pinning or localization at an interface between immiscible fluids
were considered in [8, 10, 24].

In figure 2, a directed path in a layered lattice of A-layers of width wa and B-layers of
width wb is illustrated. Edges in the path in the A-layer are weighted by a, and in the B-layer
are weighted by b, while visits to the interfaces are weighted by z0 and zw as indicated. These
paths reduce to several different models in the cases wa = wb = ∞, z0 = zw or z0 = zw = 1,
or a = 1 with b = 0 or b = 1. These models have received considerable attention in the
literature [2, 4, 7, 11, 22], and are illustrated in figure 3.

In the case wa = wb = ∞ and a = 1 with b = 0 or b = 1 several different limiting
models are obtained. Putting z0 = z and b = 0 gives a model of a directed path in the
half-space Y � 0. If the path has a free endpoint, then it is illustrated in figure 3(a). The
generating function is given by

g = z(1 − 2t +
√

1 − 4t2)

(1 − 2t)(2 − z(1 − √
1 − 4t2)

. (1)

If the final vertex of the path is in the X-axis, then this becomes a model of adsorbing Dyck
Paths. This is a directed model of a polymer adsorbing on a hard wall, and its generating
function is given by

g = 2z

2 − z(1 − √
1 − 4t2)

. (2)

This model is illustrated in figure 3(b). Both these models exhibit critical behavior when
z = zc = 2, where the free energy F z is non-analytic and for z > zc becomes dominated by
paths with a positive density of visits in the X-axis. This is the adsorbed phase. For z < 2, the
free energy is dominated by paths with a zero density of visits to the X-axis. See [11].
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(b)(a)

(d)(c)

Figure 3. (a) A path from the origin in a half-space with the generating function given by
equation (1). (b) A Dyck path from the origin with the generating function given by equation (2).
(c) A directed path from the origin with the generating function given by equation (3). (d) A Dyck
path from the origin with the generating function given by equation (4). Visits of these paths to
the X-axis are weighted by z.

In the case wa = wb = ∞ and a = b = 1 the paths interact with a defect line (the X-axis),
but are otherwise unconstrained. The simplest such model is a path from the origin with visits
in the X-axis weighted by z. The generating function in this case is given by

g = z(1 − 4t2 +
√

1 − 4t2)

(1 − 2t)(1 − 4zt2 +
√

1 − 4t2)
. (3)

This model is illustrated in figure 3(c). If the final vertex in this model is constrained to lie in
the X-axis, then this simplifies to

g = z

1 − z(1 − √
1 − 4t2)

. (4)

This model is illustrated in figure 3(d). Both these models exhibit critical behavior when
z = zc = 1, where the free energy Fz is non-analytic and for z > zc becomes dominated by
paths with a positive density of visits in the X-axis. This is the adsorbed phase. For z < 1, the
free energy is dominated by paths with a zero density of visits to the X-axis. See [11].

In the case wa = wb = w and z0 = zw = z in figures 1 or 2 we obtain the diagonal
model. In section 2 we give the recurrences for the generating functions of the diagonal model
and solve these explicitly in some simple cases for small values of w � 3 to demonstrate the
small width properties of the model. In addition, we determine free energies in these cases,
and examine forces of the path on the AB- and BA-interfaces in the model.

In section 3 we consider the general diagonal model. We give a complete solution of the
recurrences first introduced in section 2. For finite, but asymptotic values of the width w, we
consider several cases of this model. In particular, the model with b = 0 is a model of a path
in a slit of width w with hard walls. The vertices in the path adsorb onto the walls of the slit
with activity z. We recover asymptotic expansions for the free energy and forces in this model
in section 3.1, consistent with the solution given in [3]. These results show that the forces can
be attractive or repulsive and either short ranged or long ranged. We consider the diagonal
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model with a = b in section 3.2, and determine as a function of z the free energy and forces
in this model.

The interpretations of these results in a model of polymer in a layered environment are
as follows: for small values of z the polymer exerts a steric repulsive force on the interfaces
between the layers. This will tend to swell the layers. For large z the forces are attractive, and
will tend to shrink the width of the layers.

In section 3.3 the case z = 1 is considered. We give approximate solutions in two cases,
namely when a ≈ b, a � b or a � b. We note that this walk is delocalized over the
layers in this model, but that there is crossover between a regime where the walk explores
conformations delocalized over the A-layers when a � b, and over the B-layers when a � b.
There is a crossover regime when a ≈ b, and in the w → ∞ limit the crossover is a phase
transition where the path is confined to either the A-layer if a > b or the B-layer of a < b,
and delocalized over both layers if a = b. There is first-order phase transition at a = b.

In section 3.4, the case w → ∞ in the diagonal model is examined briefly for arbitrary
values of z. We determine the location of a critical adsorption transition as a function of a
and b. If z > 1, then the path adsorbs or is pinned on the AB-interface in the limit that
w → ∞.

In section 4 we consider the general model. We give recurrences and determine the
generating function. The general model appears not to have simple solutions. However, the
model has many interesting aspects, and we examine several cases. In section 4.1 we examine
the case b = 0. In this version the model reduces to a directed path in a slit with hard walls.
This model was examined in [1, 3]. We examine the correspondences between the generating
functions of the layered model and the generating functions of bridges and loops derived
in [3].

In section 4.2 we put zw = 0 and a = b with wa = wb = w to obtain a path in a slab of
width 2w with a centered defect line onto which it may absorb. We determine the free energy
and show that in the wa → ∞ limit the model has a pinning transition at z0 = 1. The nature
of the entropic forces changes at this point: we determine asymptotic expressions for the free
energy and entropic forces. These forces are only repulsive, namely, short-ranged repulsive
when z0 > 1 and long-ranged repulsive when z0 < 1.

In section 4.3 we consider a slit-model with an off-centered defect line by putting wa = w

and wb = w + m with m � w. This is a model with a defect line near the center of the slit.
We determine asymptotic expressions for the free energy and show that in this case there is
also a pinning transition as wa → ∞ at z0 = 1. Coincident with this are a changeover in the
force regimes: for small z0 < 1 there is a long-ranged repulsive force, while for large z0 the
walk is pinned on the defect line and the forces on the walls of the slit are short ranged.

A similar result is obtained in section 4.4 where a defect line is close to one of the hard
walls of the slit by putting wa = w and wb = wm with m � w. We determine asymptotic
expressions for the free energy and for the repulsive net forces on the walls of the slit. In
the w → ∞ limit the path is also pinned to the defect plane if z0 > 1. Similar to the case
in section 4.3 there are two force regimes: for small z0 < 1 there is a long-ranged repulsive
force, while for large z0 the walk is pinned on the defect line and the forces on the walls of
the slit are short ranged.

In section 4.5 we consider the model with wb = ∞. This is a model of the path close
to a defect slit of width wa . For large values of a the path should stay close or in the (finite
width) A-layer, while for large b it will be expelled from the A-layer into the (infinite width)
B-layer. We determine general expressions for the asymptotic solutions of this model and
then consider the asymptotics explicitly for several special cases, namely (1) z0 = zw = 1 in
section 4.5.1, (2) z0 = 1 and zw = 0 in section 4.5.2, (3) a = b in section 4.5.3 and (4) b = 0 in
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Figure 4. The diagonal model. In this case wa = wb = w and z0 = zw = z in a layered
environment which extends to infinity in the Y-direction. This is equivalent to a bilayered model
with periodic boundary condition as indicated.

Figure 5. A directed path in a layered environment of thickness w = 1. The final vertex has height
Nw (where N is an integer).

section 4.5.4. In each model asymptotic expressions for the free energy and forces are
determined. The walk is shown to localize to the A-layer for large values of a, and to
delocalize to the B-layer for large values of b. In addition, there are pinning transitions of
the model at the interfaces for large values of z0 and zw. We determine the phase diagram
in these cases, and show that there are attractive, repulsive and short-ranged and long-ranged
force regimes in this model.

We conclude this paper with some final comments in section 5.

2. The diagonal model

In this section we consider a special case of the model in figure 1, the case where both widths
are the same, that is wa = wb = w, and where both interface interaction strengths are the
same, that is z0 = zw = z (see figure 4).

In this model, edges whose midpoints have Y-coordinates in the intervals (2Nw,

(2N + 1)w), for N ∈ Z, are said to be in the A-layer, and each of these edges is weighted
by a factor a. On the other hand, edges whose midpoints have Y-coordinates in the intervals
((2N − 1)w, 2Nw), for N ∈ Z, are said to be in the B-layer, and each one of these edges is
weighted by a factor b. For example, if w = 1 (see figure 5) then the edges in the A-layers are
all edges whose midpoints have Y-coordinates in the intervals (2N, 2N +1), while the edges in
the B-layers are all edges whose midpoints have Y-coordinates in the intervals (2N − 1, 2N).

The value of the Y-coordinate of a vertex in the path is the height of the vertex. In this
model, all vertices at an interface between two layers are weighted by a factor z. These vertices
have heights Nw, for N ∈ Z.

6
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Figure 6. The directed path in figure 5 in a bilayered environment of thickness 2w = 2 with
periodic boundary conditions at the top and bottom boundaries. The path starts at the origin, and
the mapping of paths in a layered environment with layers of thickness w to a periodic bilayered
slit of width 2w is a bijection. An alternative way to consider this model is to imagine the slit to
be rolled into a tube of circular cross section with perimeter length 2w, and with the path winding
around the tube, but constrained to end at a vertex in an interface between the two layers.

In general, the diagonal model can be mapped to a model of a directed path in a bilayered
slit of width 2w with periodic boundary conditions. For example, the path in figure 5
becomes the path in figure 6 in a bilayered slit of width 2 with periodic boundary conditions.
Solving for the generating function of paths in this periodic bilayered slit is the equivalent
to solving for the generating function of paths in the layered diagonal model. This mapping
of the layered lattice to a periodic bilayered slit is also applicable to the general model of
figure 2.

The force exerted by the path on the interfaces between layers can be obtained as the
derivative of the free energy with respect to the width of the layers, that is

fw = dFw

dw
. (5)

The width w is a discrete parameter, therefore one may approximate the force by taking free
energy differences. This gives a finite-difference definition of the force fw = Fw+1 − Fw.
In what follows, we shall use the former definition, rather than considering finite differences,
unless indicated otherwise.

2.1. Recurrences for the generating function of paths in the diagonal model

In order to determine the generating function of paths in the diagonal model we consider paths
in the equivalent periodic bilayered slit. The X-axis is chosen at a BA-interface, that is, an
interface where the A-layer is above and the B-layer is below.

The paths we are interested in start at the origin and end at an interface, but by reversing
directions, we can instead count paths that start at an interface and end at the origin. More
precisely, we will determine g0, the generating function of paths starting at an interface on the
Y-axis, and ending on the X-axis.

Defining the following generating functions of paths in the periodic bilayered slit, all of
which start at an interface on the Y-axis:

g0 = paths ending on the X-axis;

gw = paths ending at an AB-interface (heights ±w);

hj = paths ending at height j, j = 1, 2, . . . , w − 1;

kj = paths ending at height −j, j = 1, 2, . . . , w − 1;

where we designate hw ≡ kw ≡ gw and h0 ≡ k0 ≡ g0, in what follows.
The generating functions above satisfy the following set of linear recurrence relations:

g0 = z + zah1 + zbk1, h1 = ag0 + ah2, k1 = bg0 + bk2;
gw = z + zahw−1 + zbkw−1, h2 = ah1 + ah3, k2 = bk1 + bk3;

. . . = . . . , . . . = . . . ;
hw−1 = ahw−2 + agw, kw−1 = bkw−2 + bgw.

(6)
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Since the paths have last vertices at an interface and so are weighted by an overall factor of z,
both g0 and gw have the starting term z in the above recurrences.

Generally, the generating function g0 has leading terms z(1 + O(a + b)). If z → 0, then
g0 → 0, since each path carries at least one factor of z. By considering g0/z instead, the
weight of the first vertex in the paths are changed to 1, and g0/z 
→ 0 as z → 0.

2.2. Simple cases

Consider simple cases of the diagonal model for small values of w.

2.2.1. The case w = 1. In the case w = 1 the recurrences for the generating functions (6)
reduce to

g0 = z + zagw + zbgw and gw = z + zag0 + zbg0, (7)

which can be solved exactly as

g0 = gw = z

1 − z(a + b)
. (8)

We introduce the edge generating variable t by substituting a → at and b → bt and
consider the generating function

G1 = g0

z
= 1

1 − z(a + b)t
. (9)

Putting a = b = 1 and expanding G1 in powers of t yields

G1 = 1 + 2zt + 4z2t2 + 8z3t3 + 16z4t4 + · · · (10)

which corresponds to the number of directed paths from the origin with no restriction on their
endpoints. This is to be expected because each path generated by G1 starts at an interface and
ends on the X-axis, so that by reversing the direction of the path and noticing that in this case
every vertex is at an interface, we get the desired one-to-one correspondence.

The free energy can be determined from the singularities in G1, which in this case consist
of a simple pole at t = tc = 1/(za + zb). Hence, the free energy is given by

F1 = − log tc = log(a + b) + log z. (11)

Setting z = 1 gives G1 = 1/(1 − (a + b)t) and F1 = log(a + b). The free energy is that of
a path stepping on edges with weights either a or b. If, in addition we set a = b = 1, then
F1 = log 2 and the number of paths of length n grows as 2n, as we have already observed.

Finally, setting b = 0 yields G1 = 1/(1 − zat) and F1 = log a + log z. G1 is the
generating function of a directed path confined to a slit of width 1 with hard walls and with
steps alternating in the NE- and SE-directions.

2.2.2. The case w = 2. In the case w = 2 one can solve for the generating functions from
the linear system in equation (6): the solutions are given by

g0 = z

1 − 2z(a2 + b2)t2
; g2 = z

1 − 2z(a2 + b2)t2
;

h1 = 2az

1 − 2z(a2 + b2)t2
; k1 = 2bz

1 − 2z(a2 + b2)t2
.

The generating function of paths starting at the origin and ending at an interface, with the first
vertex weighted by z = 1 is given by

G2 = g0

z
= 1

1 − 2z(a2 + b2)t2
, (12)

which generates paths of even length from the origin constrained to end at an even height.
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The free energy is determined by examining the two simple poles in G2 to find its radius
of convergence. It is given by

F2 = −log tc = log
√

a2 + b2 + log
√

2z. (13)

Observe that F2 does not have singular points, so that this model does not have a phase
transition which pins the path to an interface: since every step of the path is incident (on one
endpoint) with an interface, the z dependence in the free energy per vertex is linear in log z for
all values of z. That is, each path of length n has �n/2� visits to an interface, and by changing
z the free energy changes proportional to log z. Thus, there is no adsorption transition in this
case.

For fixed values of z the free energy smoothly depends on a and b. While the path does
explore more of the A-layer if a > b, and vice versa, the crossover from one regime to the
other is smooth, and no phase transition localizes the path in the A-layer for a large compared
to b.

Setting a = b = z = 1 yields G2 = 1/(1−4t2) and F2 = log 2. G2 counts paths starting
at the origin and ending at an even height. These paths have length 2n and the number of such
paths grows as 22n.

Finally, setting b = 0 gives G2 = 1/(1 − 2za2t2) and F2 = log a + log
√

2z. This case
corresponds to directed paths in a slit of width 2 with hard walls and with edges weighted by
a. The number of such paths grows as O(2n/2).

2.2.3. The case w = 3. In the case w = 3, the solution to the linear system (6) is given by

g0 = g3 = (1 − at)(1 − bt)z

(1 − at)(1 − bt) − za2(1 − bt)t2 − zb2(1 − at)t2
;

h1 = h2 = zat (1 − bt)

(1 − at)(1 − bt) − za2(1 − bt)t2 − zb2(1 − at)t2
;

k1 = k2 = zbt (1 − at)

(1 − at)(1 − bt) − za2(1 − bt)t2 − zb2(1 − at)t2
.

The generating function of paths starting at the origin and ending at an interface, with the first
vertex weighted by z = 1, is given by

G3 = g0

z
= (1 − at)(1 − bt)

(1 − at)(1 − bt) − za2(1 − bt)t2 − zb2(1 − at)t2
. (14)

Taking z → 0 shows that G3 → 1. This is because the end-vertex of each path generated
by G3 is weighted by z. However, one can factor this last vertex out, in which case z → 0
restricts the paths to slits of width 1 with hard walls (stepping between two lines in each A

and B layer, without being able to visit an interface or crossing it). In this context we note that

lim
z→0

[
G3 − 1

z

]
= a2t

1 − at
+

b2t

1 − bt
. (15)

This is the generating function of paths in two slits of widths 1 with edges weighted by a in
one slit and by b in the other slit, as expected.

More generally the free energy is determined by simple poles in G3, which are the
solutions of the cubic polynomial in t given by

(1 − at)(1 − bt) − za2(1 − bt)t2 − zb2(1 − at)t2 = 0, (16)

9
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for given values of z. In the event that z → 0, this reduces to the roots of (1−at)(1−bt) = 0,
which shows that the radius of convergence of limz→0 [(G3 − 1)/z] in this case is given by
tc = min{1/a, 1/b}. Therefore, the free energy in this special case is

lim
z→0

F†
3 = max{log a, log b}. (17)

This is the first model which shows a phase transition. In the AB-plane there is a critical
line a = b of first-order transitions separating a phase of paths localized in the A-layer from
a phase of paths localized in the B-layer. When a = b, the path is localized over both layers,
but observe that since z = 0 it cannot cross an interface.

More generally the roots of equation (16) are complicated algebraic expressions. If a = b,
then equation (16) reduces to (1 − at)2 − 2za2t2(1 − at), whose solutions are given by

t = −1 ± √
1 + 8z

4za
and t = 1

a
. (18)

Note that (
√

1 + 8z−1)/(4z) < 1 if z ∈ (0,∞) and limz→0+(
√

1 + 8z−1)/(4z) = 1. Thus, for
all values of z ∈ [0,∞) the radius of convergence is determined by tc = (

√
1 + 8z−1)/(4za).

The free energy can be determined to be

F3 = log

(
4za√

1 + 8z − 1

)
, if a = b. (19)

There is no non-analiticity in F3|a=b with increasing a for any value of z ∈ [0,∞) along the
line a = b.

On the other hand, if one fixes z at a non-zero value, and assume that at < 1 and bt < 1,
then equation (16) can be rewritten as

1 − za2t2

1 − at
− zb2t2

1 − bt
= 0. (20)

By the intermediate value theorem, there is a solution for t ∈ (0, 1/a) if a > b and for
t ∈ (0, 1/b) if a < b. This shows that

F3 � max{log a, log b}, if a 
= b. (21)

Furthermore, as z → 0+,F3 approaches F†
3 in equation (19) from above.

Taking b = 0 reduces equation (16) to

(1 − at) − za2t2 = 0 (22)

with solutions tc = (±√
1 + 4z − 1)/2za. This shows that the free energy is

F3 = log

(
2za√

1 + 4z − 1)

)
, if b = 0. (23)

There is no non-analiticity in F3|b=0 with increasing a for any value of z ∈ (0,∞) along the
line b = 0. However, taking z → 0+ gives the free energy in equation (14).

2.2.4. Forces for small values of w. For small values of width w, entropic forces can be
computed by using the finite-difference definition fw = Fw − Fw−1. For example, if b = 0
then the forces on the walls of a slit of widths w = 2 and w = 3 are given by

f2 = (F2 − F1)b=0 = log
√

2/z,
(24)

f3 = (F3 − F2)b=0 = log

( √
2z√

1 + 4z − 1

)
.

10
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In particular, for 0 � z < 2 the forces are repulsive (positive), but become attractive (negative)
when z > 2. There is no net force when z = 2.

More generally, one may compute free energy differences for non-zero values of b. In
this case the path steps across many layers, and a positive free energy difference will indicate
a force to ‘stretch’ the layers, while a negative difference shows a force which will ‘contract’
the layers. In the simplest case above (for w = 2) we see that

f2 = F2 − F1 = log

(√
a2 + b2

a + b

)
+ log

√
2/z. (25)

In this case there is a critical value of z given by zc = 2(a2 +b2)/(a +b)2. For values of z < zc,
the force tends to stretch the layers, and for z > zc the force tends to contract the layers.

3. The general solution of the diagonal model

In this section we consider the solution of the generating function for general values of w in the
diagonal model. The presentation is simplified by making use of the following transformations:

a → at = p

1 + p2
and b → bt = q

1 + q2
(26)

where once again t generates edges (steps) in the paths, weighted by a in the A-layer and by
b in the B-layer. Solving for p and q in the transformations (26) gives

p = 1 ± √
1 − 4a2t2

2at
and q = 1 ± √

1 − 4b2t2

2bt
. (27)

The selection of the minus signs in these solutions yields power series with non-negative
coefficients for p and q, and we call these the ‘physical solutions’. These solutions generate
Dyck paths with vertices weighted by at or by bt respectively.

Using the transformations (26) one can solve the linear system (6) in terms of p and q.
The solution is given by the following theorem:

Theorem 3.1. The solution to the system of equations (6) is given by

g0 = gw = z

1 − z(p2+pw)

(1+p2)(1+pw)
− z(q2+qw)

(1+q2)(1+qw)

hi = z(p−i (1 − pw) − pi(1 − p−w))

1 − z(p2+pw)(p−w−pw)

(1+p2)(1+pw)
− z(q2+qw)(p−w−pw)

(1+q2)(1+qw)

i = 1, . . . , w − 1

ki = z(q−i (1 − qw) − qi(1 − q−w))

1 − z(p2+pw)(q−w−qw)

(1+p2)(1+pw)
− z(q2+qw)(q−w−qw)

(1+q2)(1+qw)

i = 1, . . . , w − 1.

Proof. The solutions are verified by direct substitution and simplification of the generating
functions in the recurrences. �

For w � 3 these solutions reduce to the cases given in section 2.2. For finite values of w,
the generating function of interest is g0 given by

g0 = 1

1 − z(p2+pw)

(1+p2)(1+pw)
− z(q2+qw)

(1+q2)(1+qw)

. (28)

It is interesting to note the high degree of symmetry in this solution. Not only are there
the obvious symmetries such as (p, q) ↔ (q, p), but there also are symmetries of the form

11
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p2 + pw

(1 + p2)(1 + pw)
= +

Figure 7. The term (p2 + pw)/(1 + p2)(1 + pw) in the denominator of equation (28) generates
paths in a slit of width w which start at the bottom bounding line of the slit and end the first time
they reach either one of the two bounding lines of the slit.

(p2 ↔ pw) and (q2 ↔ qw), as well as (p ↔ 1/p) and (q ↔ 1/q). Note also the separation
of the p and q terms in the denominator of equation (28).

Consider the term (p2 + pw)/(1 + p2)(1 + pw). By setting a = 1, so that p =
(1 −√

1 − 4t2)/2t , one can verify that this term generates paths in a slit of width w starting at
the bottom bounding line of the slit, and ending on the first vertex that visits either bounding
line of the slit. For example,

p2 + pw

(1 + p2)(1 + pw)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t if w = 1,

2t2 if w = 2,

t2

1−t
if w = 3,

t2

1−2t2 if w = 4,

t2(1−t)

1−t−t2 if w = 5,

and so on. If w = 1 then there is only one path starting in the bottom bounding line and
ending the first time it reaches either one of the two bounding lines: it is the path of length one
with a NE-step to the top bounding line. If w = 2, then there are two paths (both of length 2)
starting in the bottom bounding line and ending the first time they reach either one of the two
bounding lines: a path with two consecutive NE-steps (it ends at the top bounding line), and
a path with a NE-step followed by a SE-step (it ends at the bottom bounding line).

One may similarly examine the other expressions above. These observations explain the
structure of the generating functions obtained in theorem 3.1 and equation (28). We illustrate
this in figure 7.

Selecting the negative signs in the transformations (27) and substituting these into g0,
as given by (28), give a generating function which becomes singular when t → 1/2a or
t → 1/2b, because these are branch points in p and q. The radius of convergence of g0 is
determined either by these branch points, or by the curve of simple poles in the pq-plane given
implicitly by solutions of

(1 + p2)(1 + pw)(1 + q2)(1 + qw)

= z(p2 + pw)(1 + q2)(1 + qw) + z(q2 + qw)(1 + p2)(1 + pw), (29)

for given values of z. This equation is obtained by equating the denominator of g0 to zero
and rearranging terms. Determining the exact solutions of this equation is generally not
possible, even in simplified models. Therefore we shall consider mostly some special cases
and asymptotic solutions.

3.1. The case b = 0.

In the case b = 0 we have q = 0 as well, and we obtain the model in figure 8. This corresponds
to a model of paths in a slit of width w [3], adsorbing onto the hard walls with activity z, and

12
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Figure 8. A path in a slit of width w with hard walls. This model is obtained by setting b = 0 in
equation (29). This in turn sets q = 0, and the roots of equation (30) give the critical values of t.

with edges weighted by a. Equation (29) reduces to

(1 + p2)(1 + pw) = z(p2 + pw). (30)

For 1 � w � 3 this reproduces the cases examined in section 2.2. Exact solutions can also be
obtained for w = 4, 5, 6, 8, 10, 12 using Maple 10 [17].

For finite values of w asymptotic expressions for the free energy have been obtained in
[3]. These are

Fw = − log tc

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log

(
za√
z − 1

)
+

(z − 2)2

2(z − 1)
√

(z − 1)w
+ O(w(z − 1)−w), if z � 2;

log(2a) − π2

2w2
+

2π2z

(2 − z)w3
+ O(w−4), if z < 2.

(31)

If w → ∞ this reduces to the free energy of an adsorbing Dyck path on the X-axis (see, for
example, equation (2):

F∞ =

⎧⎪⎨
⎪⎩

log

(
az√
z − 1

)
, if z � 2;

log(2a), if z < 2.

(32)

Setting a = 1 reduces this case to the model in figure 3(a) of an adsorbing directed path in a
half-space. There is an adsorption transition at zc = 2, and for z > zc density of the visits to
the hard walls is positive, while for z < zc it is zero. For finite values of w there is a crossover
between an expanded regime for small z to a regime where the path is close to one of the hard
walls. This is not a phase transition, but it has effects on the entropic force exerted by the path
on the walls of the slit.

The entropic forces can be determined by taking the derivative of Fw with respect to w:

fw �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (z − 2)2 log(z − 1)

4(z − 1)
√

(z − 1)w
+ O((z − 1)−w), if z � 2;

π2

w3
− 6π2z

(2 − z)w4
+ O(w−5), if z < 2.

(33)

For small values of z < 2, the force is positive (repulsive) and it decays as an inverse power
with increasing w—this is a long-ranged repulsive force. For large values of z > 2 the force
is negative (a net attraction between the walls of the slit) and it decays exponentially with
increasing w—this is a short-ranged attractive force.

13
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Figure 9. A path in a slit of width 2w with periodic boundary conditions (as denoted by the arrows
on the left) and with two evenly spaced defect lines. The path can terminate at either one of the
defect lines. This model is obtained by setting b = a in equation (29). This results in q = p, and
the roots of equation (34) give the critical values of t.

3.2. The case b = a

If we set b = a, and hence q = p, we obtain the model in figure 9. In this case, the
denominator of g0, given in equation (29), reduces to

(1 + p2)(1 + pw) = 2z(p2 + pw). (34)

If one substitutes z → z/2, then this becomes identical to equation (30). In other words, the
same remarks apply here as in section 3.1, but with z replaced by 2z. The free energy in this
model is

Fw = − log tc

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log

(
2za√
2z − 1

)
+

2(z − 1)2

(2z − 1)
√

(2z − 1)w
+ O(w(2z − 1)−w), if z � 1

log(2a) − π2

2w2
+

2π2z

(1 − z)w3
+ O(w−4), if z < 1,

(35)

and if w → ∞ this reduces to the free energy of a directed path interacting with a defect
line in the lattice (see, for example, [11]). This is a model of a polymer being pinned at the
interface between two fluids. There is a pinning transition at zc = 1. If z < 1, then the path
is expanded over the layers, but for z > 1 the path has a positive density of visits to the defect
lines and is pinned to it.

For finite values of w there is no phase transition between the expanded and pinned phases,
but there are two regimes as suggested by the asymptotic expressions for the free energy above.
The path exerts an entropic force on the interfaces between layers, and for large values of z

this is an attractive force, bringing together the BA- and AB-interfaces, while for small values
of z it will be a repulsive force. Asymptotic expressions for these forces can be determined
by taking the derivative of Fw with respect to w:

fw �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (z − 1)2 log(2z − 1)

2(2z − 1)
√

(2z − 1)w
+ O((2z − 1)−w), if z � 1;

π2

w3
− 6π2z

(1 − z)w4
+ O(w−5), if z < 1.

(36)

Similarly to the case when b = 0, for small values of z < 1, the force is positive (repulsive)
and long ranged because it decays as an inverse power of w with increasing w. This repulsive
force vanishes to order O(w−5) when z = z∗ = w/(w + 6), and we call z∗ the zero force

14
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Figure 10. A path in a bilayered slit with periodic boundary conditions of width 2w, and with two
layers of equal width w. This model is obtained by setting z = 1. Then q = p and the critical
values of t are obtained by examining the roots of equation (38).

point. For z < z∗ the force is repulsive and long ranged, but for z in the range (z∗, 1) is an
attractive long-ranged force.

For large values of z > 1 the force is negative (inducing a net attraction between
the interfaces of the layers) and short ranged because it decays exponentially in w with
increasing w.

Hence, this model exhibits three force regimes: for small values of z < z∗ there is a
repulsive short-ranged force which becomes attractive short ranged for z∗ < z < 1 and which
in turn becomes an attractive long-range force when z > 1. With increasing values of w the
regime of attractive short range forces narrows and disappears in the w → ∞ limit.

3.3. The case z = 1

If we set z = 1 this becomes a model of a path in a bilayered environment with alternating
A-layers and B-layers of equal thickness w, as illustrated in figure 10. The generating function
is given by

g0|z=1 = (1 + p2)(1 + q2)(1 + pw)(1 + qw)

(1 + pw+2)(1 + qw+2) − (p2 + pw)(q2 + qw)
, (37)

which generates directed paths in A- and B-layers of width w, starting at the origin and
terminating at an interface between the two layers. Roots in the denominator of the generating
function are given by solutions of

(1 + pw+2)(1 + qw+2) = (p2 + pw)(q2 + qw). (38)

Consider first the case b > a (the case a > b can be obtained by interchanging a and b in the
solution). To determine an approximate solution for p, we proceed by solving for q in terms
of p:

q(p) =
a(1 + p2)

(
1 −

√
1 − 4b2p2

a2(1+p2)2

)
2bp

. (39)

We write the denominator in equation (38) as

q −
(

pw(q2 − p2) + q2p2 − 1

pw(p2q2 − 1) + q2 − p2

) 1
w

= 0 (40)

and note that asymptotic solutions can be obtained by expanding this as

q − 1 − 1

w
log

(
p2q2 − 1

q2 − p2

)
− 1

2w2

[
log

(
p2q2 − 1

q2 − p2

)]2

− · · · = 0 (41)

asymptotically in w.
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Substitute the expression for q in equation (39) into this and assume that asymptotically
in w,

p = e
iπ
2w

(
c0 +

c1

w
+

c2

w2
+

c3

w3
+

c4

w4
+ O(w−5)

)
. (42)

Substituting this ansatz for p into the denominator, and again expanding asymptotically in w

allows one to determine the ci term-by-term in the expansion. The results are

c0 = b − √
b2 − a2

a
, (43)

and

c1 = − iπc0

2
, c2 = −π2c0

8
, c3 = iπ3c0

48
, and c4 = π4c0

384
. (44)

The asymptotic expression of the critical value of t is obtained from atc = p/(1 + p2). The
result is

atc � a

2b
. (45)

The physical root is given by the positive sign. A similar argument gives the asymptotic
behavior of tc in the case a > b.

This result shows that if b � a, then the path steps mostly in the B-layers, and only a
vanishing fraction of its edges will be in the A-layer, which it must cross to move between
B-layers. Since the path is delocalized over the lattice, there is no residual dependence on w.

If a ≈ b, then it follows from equation (39) that aq ≈ bp. Substituting q = bp/a into
the denominator gives a polynomial in p of degree 2w + 4:

(pw+2 + 1)((pb/a)w+2 + 1) − (pw + p2)((bp/a)w + (bp/a)2) = 0. (46)

The roots of this polynomial is evidently given by roots of unity, or roots of unity multiplied
by the factor

√
a/b. Thus, assume that p is approximated by equation (42) and substitute and

expand the result asymptotically in w to determine the ci term-by-term. The results are

c0 =
√

a

b
, c1 = − iπc0

2
, c2 = −π2c0

8
,

(47)

c3 = iπ3c0

48
, and c4 = π4c0

384
,

and with this selection the denominator of g0 is equal to 2w(a − b)2/b2 + O((a − b)3 so that
it vanishes up to terms of order O(w(a − b)2). In other words, this solution is good when
w(a − b)2 = o(1). In other words, with increasing w, the crossover regime between a � b

and a � b will shrink proportional to 1/
√

w.
From this one can determine the critical value of a by examining at = p/(1 + p2). The

result is that

atc �
√

ab

a + b
= 1

2
− (a − b)2

16a2
+ · · · . (48)

This result shows that if a ≈ b, then the path is delocalized over the lattice stepping freely
in both layers. Since this is a delocalized regime, there is no residual dependence on w. A
similar result is obtained if one examines this model by approximating q instead, with b and
a interchanged in the results.
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The free energy of the model can be determined from these approximations of tc:

Fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log 2a, if a � b;

log a − log

( √
ab

a + b

)
, if a � b;

log b − log

( √
ab

a + b

)
, if b � a;

log 2b, if b � a.

(49)

Thus, for large a � b, then path steps in A-layers, with only a vanishing number of steps in
B-layers, while when a approaches b the path will delocalize over both layers. Thus, both
regimes in this model are delocalized.

3.4. The case w → ∞
Assume that p < 1 and q < 1 and consider the model in the limit w → ∞. Then, the
generating function g0 becomes

g∞ = lim
w→∞ g0 = z

1 − zp2

1+p2 − zq2

1+q2

= 2z2

2(1 − z) + z(
√

1 − 4a2t2 +
√

1 − 4b2t2)
. (50)

If z = 1, the above reduces to

g∞ = 1

1 − p2

1+p2 − q2

1+q2

= 2

(
√

1 − 4a2t2 +
√

1 − 4b2t2)
, (51)

which has branch-points in the ab-plane along the lines t = 1/2a and t = 1/2b. The free
energy in this case is given by

F∞(a, b) = max{log(2a), log(2b)}, (52)

Note that these critical lines (t = 1/2a and t = 1/2b) correspond to an A- and a B-phase,
respectively. If a > b, the walk has free energy determined by paths localized in the A-layer.
On the other hand, if b > a, the walk has free energy determined by paths localized in the
B-layer.

Consider next the case where 0 < z < 1, in which case 2(1 − z) > 0. Hence, the
singularities in g∞ in equation (50) are still lines of branch points due to the square root terms,
and the free energy is given by equation (52).

Finally, consider the case 1 < z. In this case, the radius of convergence of the generating
function g∞ is given by the zeros of the denominator in equation (50). One can rewrite the
denominator in this case and solve for t from

(
√

1 − 4a2t2 +
√

1 − 4b2t2) = 2(z − 1)

z
. (53)

The left-hand side takes values between 0 and 2 as t varies between 0 and min{1/2a, 1/2b}.
If a < b, then there are solutions to (53) if

√
1 − (a/b)2 � 2(z − 1)/z � 2. Thus, if a < b,

there are solutions if

z � 2

2 −
√

1 − (a/b)2
. (54)
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More generally, we define

zc =

⎧⎪⎪⎨
⎪⎪⎩

2

2 −
√

1 − (a/b)2
, if a � b,

2

2 −
√

1 − (b/a)2
, if a > b.

(55)

Therefore, if a 
= b and z � zc the solutions to equation (53) are given by

t2
c = (z − 1)((1 − z)(a2 + b2) +

√
z2(a2 + b2)2 + 4(1 − 2z)a2b2)

z2(a2 − b2)2
. (56)

If z → z+
c , this becomes t2

c = min{1/4a2, 1/4b2}.
Hence, the free energy of this model in the limit w → ∞ is given by

F∞ =
{

max{log 2a, log 2b}, if z � zc;
−log tc, if z > zc,

(57)

where tc and zc are defined in equations (56) and (55), respectively. In the abz-parameter space
this model has several critical surfaces. One critical surface is a first-order phase transition
given by a = b and z � zc. A second critical surface is given by z = zc, which is a transition
from the localized phases (with the path localized to the A-phase or the B-phase) to an adsorbed
phase where the path adsorbs onto the AB- or BA-interfaces. These critical surfaces meet on
the curve a = b and z = zc, which is a curve of multicritical points.

In the case that a = b as well, then zc = 1, and if z > 1 the solutions for tc are obtained
by solving

4a2t2 = 1 −
(

z − 1

z

)2

. (58)

This has real solutions given by tc =
√

1 − ((z − 1)/z)2/2a. Observe that as z → 1+,

tc → 1/2a. This shows that the free energy is given by

F∞(a, a) =

⎧⎪⎨
⎪⎩

log 2a, if z � 1,

log 2a + log

√
2z − 1

z2
, if z > 1.

(59)

Increasing z from z < 1 shows that branch point singularities in the generating function give
way to simple poles for z > 1. In other words, there is a phase change in this model, from
phases dominated by paths localized in either the A- or B-layers for (z < 1), to a phase of
paths pinned onto the AB- or BA-interfaces with free energy containing a term dependent on
the value of z (and therefore a positive density of visits to the interfaces).

4. The general model

In this section we consider the general model (see figure 11) of directed paths in a layered
square lattice with two types of layers alternating in the Y-direction: an A-layer of width wa

and a B-layer of width wb.
This is the model in figures 1 and 11 of a path starting at the origin and ending at an

interface between the A- and B-layers (or alternatively, starting at an interface between the
two layers, and having its final vertex on the X-axis). The X-axis will be chosen to be at a
BA-interface, as in figure 2. This is also a model of directed paths in a bilayered slit of width
wa + wb with periodic boundaries, as depicted in figure 11.
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Figure 11. The general model: a bilayered lattice with two alternating layers of thicknesses wa

and wb , and two different interactions with the interfaces given by z0 and zw . By introducing
periodic boundary conditions as indicated by the arrows on the left, the model wraps around on a
cylinder of circumference wa + wb with two defect lines along the interfaces between the layers.

As before we have generating variables for edges (t), weights for edges in the A-layers (a)
and in the B-layers (b), for vertices at a BA-interface (z0), and for vertices at an AB-interface
(zw).

Let w ≡ (wa,wb) and introduce the following generating functions of paths starting at
an interface on the Y-axis and ending at a prescribed height:

g0 = paths ending on the X-axis;

gw = paths ending at height wa (or wb by periodicity);

hj = paths ending at height j, j = 1, 2, . . . , wa − 1;

kj = paths ending at height −j, j = 1, 2, . . . , wb − 1,

where we designate hwa
≡ kwb

≡ gw and h0 ≡ k0 ≡ g0 in what follows.
Recurrences for these generating functions can be determined by considering the

equivalent periodic bilayered lattice, similar to the situation in figures 5 and 6. We obtain a
system of linear equations given by

g0 = z0 + z0ah1 + z0bk1,
(60)

gw = zw + zwahwa−1 + zwbkwb−1,

where hi and kj are solutions of

h1 = ag0 + ah2, k1 = bg0 + bk2;
h2 = ah1 + ah3, k2 = bk1 + bk3;
. . . = . . . , . . . = . . . ;
hwa−1 = ahwa−2 + agw,kwb−1 = bkwa−2 + bgw.

The solutions to these recurrences are given by the following theorem:

Theorem 4.1. Define the functions

cs = p2 − p2wa

(1 + p2)(1 − p2wa )
+

q2 − q2wb

(1 + q2)(1 − q2wb)
(61)

and

co = pwa (1 − p2)

(1 + p2)(1 − p2wa )
+

qwb(1 − q2)

(1 + q2)(1 − q2wb)
(62)

where we define p and q via the transformations

a → at = p

1 + p2
, b → bt = q

1 + q2
. (63)
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Figure 12. The term pw(1 − p2)/(1 + p2)(1 − p2w) in (62) generates paths in a slit of width
w, from the origin, and terminating on the first intersection with the top wall of the slit, without
visiting the bottom wall. The term (p2 − p2w)/(1 + p2)(1 − p2w) in (61) generates paths in a slit
of width w, from the origin, and terminating on the first intersection with the bottom wall of the
slit, without visiting the top wall. Summing these terms produces figure 7.

Then the solutions for g0 and gw in equations (60) are given by

g0 = z0(1 − zw(cs − co))

1 − (zw + z0)cs + z0zw

(
cs

2 − co
2
) , (64)

and

gw = zw (1 − z0 (cs − co))

1 − (zw + z0) cs + z0zw

(
cs

2 − co
2
) . (65)

The solutions for hi and ki in equations (60) are

hi = zw(1 − z0(cs − co))(p
i − p−i ) + z0(1 − zw(cs − co))(p

wa−i − p−(wa−i))

(pwa − p−wa )
(
1 − (zw + z0)cs + z0zw

(
cs

2 − co
2
)) , (66)

and

ki = zw(1 − z0(cs − co))(q
i − q−i ) + z0(1 − zw(cs − co))(q

wb−i − q−(wb−i))

(qwb − q−wb)(1 − (
zw + z0)cs + z0zw

(
cs

2 − co
2
)) . (67)

Proof. The theorem can be verified by direct substitution and simplification of the expressions
into the recurrences in equations (60). �

Observe that the first term in cs counts paths that start at the origin, step into the A-layer,
and terminate on first return to the X-axis before reaching the AB-interface at wa . The edges
of these paths remain entirely inside the A-layer, and the paths have only two vertices at the
interfaces between layers: both vertices are on the X-axis. These are loops in the A-layer.
Similarly, the second term in cs counts loops in the B-layer. We illustrate this in figure 12.

Note also that the first term in co counts paths that start at the origin, step into the A-layer,
and terminate on first intersection with the AB-interface at wa without visiting the X-axis
again. The edges of these paths remain entirely inside the A-layer, and the paths have only
two vertices at the interfaces between layers: the initial vertex is on the X-axis and the final
vertex is at the AB-interface. This is a bridge in the A-layer. Similarly, the second term in co

counts bridges in the B-layer. We illustrate this in figure 12.
Let g0 and gw be defined as above. Then each path ending on the X-axis (the BA-interface)

is either a single vertex (z0), or is a bridge from the BA- to the AB-interface followed by a
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Figure 13. A proof by picture that cs(wa,wb) − co(wa, wb) = cs(wa/2, wb/2). This illustrates
the identity for path confined to the A-layer. Similar more general drawings prove it generally.

path counted by gw (crossing back to the BA-interface), or is a loop starting and ending in the
BA-interface followed by a path counted by g0. Hence

g0 = z0 + z0cogw + z0csg0.

Similarly, a path ending in the AB-interface is either a single vertex (zw), or is a bridge from
the AB-interface to the BA-interface followed by a path counted by g0, or is a loop starting
and ending in the AB-interface, followed by a path counted by gw. This shows that

gw = zw + zwcog0 + zwcsgw.

Solving simultaneously for g0 and gw gives the expressions claimed. Similar arguments give
solutions for the hi and ki .

It is interesting to note that for even values of wa and wb,

cs(wa,wb) − co(wa,wb) = cs(wa/2, wb/2). (68)

In other words, the number of loops in layers of widths (wa,wb) minus the number of bridges
in layers of widths (wa,wb) is equal to the number of loops in layers of width (wa/2, wb/2).
In figure 13 we give a proof by picture.

This model has a rich mathematical structure, and we next investigate some special cases.
In the case z0 = zw = z, the generating function g0 reduces to

g0|z0=zw=z = 1

1 − z(cs + co)
, (69)

and this is identical to the solution in equation (28) when wa = wb = w as well. For general
values of wa and wb this shows that paths are generated by multiplying together the factors in
figure 12, since

g0|z0=zw=z = 1 + z(cs + co) + z2(cs + co)
2 + · · · . (70)

In the case b = 0 and a = 1, the model reduces to that of a fully directed path in a slit
of width wa and interacting with the walls of the slit via the activities z0 and zw. This model
was examined in great detail in [3], and we show that the generating function above reduces
to that model if b = 0 and a = 1. We focus on this model in section 4.1.

A different model is obtained when zw = 0. In this case the path is confined to a bilayer
with a BA-interface (or a defect line) on the X-axis separating the A-layer of thickness wa and
the B-layer of thickness wb. In this case there are several models to consider, namely, the case
a = b and wa = wb = w (section 4.2), the cases that a = b with wb = wa + m (section 4.3)
and a = b and wb = mwa = mw (section 4.4).

The model with a finite A-layer between two infinite B-layers is obtained when wb → ∞.
We examine this case in section 4.5. The general case is complex, and we give only partial
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Figure 14. A directed path in a slit of width wa with hard walls. This model is obtained from the
general model by setting b = 0 in theorem 4.1. This is also the model solved in [3].

results. In several special cases in this model we give asymptotic expressions for the free
energy and entropic forces.

More generally, one may use the arguments in this section to study paths in layered
environments with more than one layer. Consider a model with N layers repeating periodically
and of thicknesses wi, i = 0, 1, 2, . . . , N − 1, where each edge of the path in an ith layer is
weighted by a factor ai ; each vertex of the path at an interface between layers (i − 1) and i is
weighted by a factor zi , and in the interface between layer N − 1 and layer 0 weighted by z0.

For i = 0, 1, . . . , N − 1, let gi be the generating function of paths starting at a given
interface between layers i − 1 and i, and terminating at an interface between any two layers,
and define

ait = pi

1 + p2
i

, c(i)
o = p

wi

i

(
1 − p2

i

)
(
1 + p2

i

)(
1 − p

2wi

i

) , and c(i)
s = p2

i − p
2wi

i(
1 + p2

i

)(
1 − p

2wi

i

) .

Then the generating functions g0, g1, . . . , g(N−1) are the solutions of the linear system(
1 − z0

(
c(0)
s + c(N−1)

s

))
g0 = z0 + z0

(
c(0)
o g1 + c(N−1)

o g(N−1)

);(
1 − z1

(
c(1)
s + c(0)

s

))
g1 = z1 + z1

(
c(1)
o g2 + c(0)

o g0
);(

1 − z2
(
c(2)
s + c(1)

s

))
g2 = z2 + z2

(
c(2)
o g3 + c(1)

o g1
);

. . . = . . .

(1 − zN−1
(
c(N−1)
s + c(N−2)

s

)
)g(N−1) = zN−1 + zN−1

(
c(N−1)
o gN + c(N−2)

o g(N−2)

)
,

where gN ≡ g0. Rewriting the linear system as DG = Z + AG with D and A

being matrices, whose entries are the coefficients of the vector (g0, g1, . . . , g(N−1))
t and

Z = (z0, z1, z2, . . . , zN−1)
t , shows that the solution is G = (D −A)−1Z, and the singularities

in G which determine the free energy are found by considering det(D − A) = 0.

4.1. A directed path in a slit

Consider the case where b = 0, which implies q = 0. Then the directed path is confined to
a slit of width wa interacting with the hard walls with activities z0 and zw, and having each
edge weighted by a factor a, as illustrated in figure 14. This model was considered in [3], and
we examine it here briefly by considering the generating function g0:

g0|q=0 = z0(1 + p2)((1 + p2 − zwp2) − (1 + p2 − zw)p2wa ) + z0zwpwa (1 − p4)

(1 + p2 − z0p2)(1 + p2 − zwp2) − (1 + p2 − z0)(1 + p2 − zw)p2wa
. (71)
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In [3] the generating functions B(wa) of bridges (paths starting and ending at opposite
walls of the slit) and L(wa) of loops (paths starting and ending at the same wall of the slit)5

B(wa) = z0zwpwa (1 − p4)

(1 + p2 − z0p2)(1 + p2 − zwp2) − (1 + p2 − z0)(1 + p2 − zw)p2wa
, (72)

L(wa) = z0(1 + p2)[(1 + p2 − zwp2) − (1 + p2 − zw)p2wa ]

(1 + p2 − z0p2)(1 + p2 − zwp2) − (1 + p2 − z0)(1 + p2 − zw)p2wa
. (73)

One may check that

g0|q=0 = B(wa) + L(wa) (74)

as expected because g0|q=0 generates paths starting on the X-axis, which corresponds to the
bottom wall in a slit of width wa , and ending either at the X-axis (it is a loop) or at the
AB-interface (it is a bridge), which corresponds to the top wall of the slit.

Similarly, if zw = q = 0 then the generating function g0 reduces to the generating function
of loops in a slit of width wa − 1 adsorbing at the X-axis with activity z0. Thus,

g0| zw=0,
q=0

= L(wa)|zw=0 = L(wa − 1)|zw=1 (75)

because loops in a slit of width wa − 1 (and not interacting with the top bounding line) are
generated by L(wa)|zw=0 or by L(wa − 1)|zw=1.

Singularities in the generating function in this model are given by branch points in p, and
by zeros of the denominators in B(wa) and L(wa), namely, by solutions of

p2wa = (1 + p2 − z0p
2)(1 + p2 − zwp2)

(1 + p2 − z0)(1 + p2 − zw)
(76)

in the t-plane if p = (1 − √
1 − 4a2t2)/2t . The free energy can be determined from these

singularities, and asymptotic expressions in w have been determined in [3]. These are

Fwa
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log

(
az0√
z0 − 1

)
+

(z0 − 2)2(z0zw − z0 − zw)

2(z0 − zw)(z0 − 1)wa+1

+ O(wa(z0 − 1)−2wa ), if z0 > 2 and z0 > zw;

log

(
az0√
z0 − 1

)
+

(z0 − 2)2

2(z0 − 1)
wa
2 +1

+ O(wa(z0 − 1)−wa ), if z0 � 2 and z0 = zw;

log(2a) − π2

2w2
a

− 2π2(z0zw − z0 − zw)

(2 − z0)(2 − zw)w3
a

+ O
(
w−4

a

)
, if z0 < 2 and zw < 2;

log(2a) − π2

8w2
a

+
π2zw

4(2 − zw)w3
a

+ O
(
w−4

a

)
, if z0 = 2 and zw < 2.

(77)

In the case that zw > z0, then z0 ↔ zw in the above expressions. The phase diagram of this
model was discussed in [3], and we only point out the essential elements here. We reproduce
the phase diagram in figure 15. In the wa → ∞ limit there are several critical curves in the
diagram. These are given in solid lines in figure 15: the lines z0 = 2 and zw < 2 and zw = 2

5 These loops and bridges are defined differently from our earlier definition. In this case the paths may visit vertices
in the walls of the slit numerous times before terminating in a vertex in one of the two walls.
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Figure 15. The phase and force diagram of a directed path in a slit with hard walls in the limit
that wa → ∞. In this model, zc = 2. There are three phases: for z0 > 2 and z0 > zw the path is
adsorbed at the bottom wall of the slit. For zw > 2 and zw > z0 the path is adsorbed at the top wall
of the slit. For both z0 < 2 and zw < 2 the path is desorbed. There is a zero force curve denoted
by a dashed curve in the diagram, given by z0zw − z0 − zw = 0. For values of z0 and zw on the
large z0 and zw side of this curve the forces are attractive and short ranged (SRA). For values of z0
and zw on the small z0 and z2 side of the curve, the forces are repulsive, and either short ranged
(SRR) if either z0 > 2 or zw > 2, and long ranged if both z0 < 2 and zw < 2 (LRR).

and z0 < 2 are the lines of adsorption transitions, while the line z0 = zw > 2 is a line of
first-order transitions separating two adsorbed phases on either the bottom or top wall. For
finite values of wa there are no phase transitions, but the entropic forces in the model changes
along the phase boundaries in figure 15, as well as along a line of zero forces.

Forces on the walls of the slit can be determined by taking the derivative of Fwa
with

respect to wa . This gives

fwa
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (z0 − 2)2(z0zw − z0 − zw) log(z0 − 1)

2(z0 − zw)(z0 − 1)wa+1

+O((z0 − 1)−2wa ), if z0 > 2 and z0 > zw;

− (z0 − 2)2 log(z0 − 1)

4(z0 − 1)
wa
2 +1

+ O((z0 − 1)−wa ), if z0 � 2 and z0 = zw;

π2

w3
a

+
6π2(z0zw − z0 − zw)

(2 − z0)(2 − zw)w4
a

+ O
(
w−5

a

)
, if z0 < 2 and zw < 2;

π2

4w3
a

− 3π2zw

4(2 − zw)w4
a

+ O
(
w−5

a

)
, if z0 = 2 and zw < 2.

(78)

In the case that zw > z0, then z0 ↔ zw in these expressions for the forces as well.
The phase and force diagram of this model is given in figure 15. For values of z0 larger

than 2 such that z0zw > z0 + zw, there are attractive forces between the walls of the slit.
These forces decay exponentially in wa with increasing width of the slit (they are short-ranged
forces). For values z0 > 2 and zw small enough so that z0zw < z0 +zw the forces are repulsive,
but remain short ranged. The curve z0zw = z0 + zw is a zero force curve in the force diagram.

For values z0 > 2 and z0 = zw the forces are attractive and decay at a different exponential
rate in wa with increasing width of the slit. In this regime the forces are also short ranged.
For values of z0 < 2 and zw < 2 or z0 = 2 and zw < 2, the forces are repulsive, but decay as
a cubic power in wa . These are long-ranged forces.
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Figure 16. A path in a slit of width 2w − 2 with hard walls and with a centered defect line. The
path terminates on the defect line. This model is obtained by setting b = a,wb = wa and zw = 0
in the general model.

In the limit wa → ∞, the generating function g0/z0 reduces to

lim
wa→∞

g0

z0

∣∣∣∣
q=0

= 1 + p2

1 + p2 − z0p2
= 2z0

2 − z0(1 − √
1 − 4t2)

, (79)

which is the generating function of a Dyck path adsorbing on the X-axis.

4.2. A directed path in a slit with a centered defect line

Consider the case where zw = 0, a = b and wa = wb = w. Then the directed path starts
at the origin and ends on the X-axis, which is a defect line with activity z0, as illustrated in
figure 16. The path cannot intersect the AB-interfaces because zw = 0, so that it is effectively
confined in a slit of width 2w − 2 with hard walls given by Y = ±(w − 1).

The generating function of interest in this case becomes

g0 = z0 (1 − zw (cs − co))

1 − (zw + z0) cs + z0zw

(
cs

2 − co
2
) = z0

1 − z0cs

(80)

where we have used the fact that zw = 0, and

cs = p2 − p2wa

(1 + p2)(1 − p2wa )
+

q2 − q2wb

(1 + q2)(1 − q2wb)
= 2(p2 − p2w)

(1 + p2)(1 − p2w)
(81)

because wa = wb = w and p = q (due to the fact that a = b).
The denominator of g0 is given by

(1 + p2)(1 − p2w) − 2z0(p
2 − p2w) = 0 (82)

which can be rewritten as

p2+2w + (1 − 2z0)p
2w − (1 − 2z0)p

2 − 1 = 0. (83)

This is a polynomial of degree 2w + 2 in p, and if w → ∞ with 0 � p < 1, then it simplifies
to

(1 − 2z0)p
2 + 1 = 0. (84)

The solution is

p0 = 1√
2z0 − 1

(85)

which is real if z0 > 1/2, and we note that 0 < p0 < 1 if z0 > 1.
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To develop an asymptotic formula for p for large but finite w, we again use the approach
in [1]. If z0 > 1, in which case 0 < p0 < 1, we assume that for some function C, independent
of w, we have the following asymptotic expansion of p in terms of p0:

p = p0 + Cp2w
0 + O

(
p3w

0

)
. (86)

To determine C, substitute (86) into (83), and compare coefficients of p0 with powers less than
3w. This shows that

C = 2z0 (z0 − 1)

(2z0 − 1)3/2 . (87)

The asymptotics for the critical value of t can be obtained from the transformation at =
p/(1 + p2) and the asymptotic expansion for p. This is given by

atc =
√

2z0 − 1

2z0
+

(z0 − 1)2

z0
√

2z0 − 1

(
1

2z0 − 1

)w

+ O(w(2z0 − 1)−3w/2). (88)

These asymptotics are only valid if |p| < 1, which is the case if z0 > 1.
Otherwise z0 < 1 and we approximate p by a root of unity by assuming

p = eπ i/w
(

1 +
c1

w
+

c2

w2
+

c3

w3
+ O(1/w4)

)
. (89)

Substituting this into the denominator in equation (83), expanding in inverse powers of w, and
determining the values of the ci , then gives the solutions

c1 = 0, c2 = π iz0

z0 − 1
, and c3 = π iz2

0

(z0 − 1)2
. (90)

The critical value of t can again be determined from these results:

atc = 1

2
+

π2

4w2
− π2z0

2(1 − z0)w3
+ O(w−4). (91)

If z0 = 1, the denominator reduces to (p2 − 1)(p2w − 1) so that p = eπ i/2w. Determining
the asymptotics from this solution shows that

atc = 1

2
+

π2

16w2
+

5π4

768w4
+ O(w−6). (92)

The free energy Fw = − log tc can be determined from (88), (91) and (92):

Fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

log

(
2z0a√
2z0 − 1

)
− 2(z0 − 1)2

(2z0 − 1)w+1
+ O(w(2z0 − 1)−3w/2), if z0 > 1;

log(2a) − π2

8w2
− π4

192w4
+ O(w−6), if z0 = 1;

log(2a) − π2

2w2
+

z0π
2

(1 − z0)w3
+ O(w−4), if z0 < 1.

(93)

In the w → ∞ limit this model reduces to a path near a defect line. If z0 < 1, the path is
delocalized, but when z > z0 the path has a positive density of visits to the defect line and it
is pinned. This transition has an effect on the entropic forces on the walls of the slit for finite
values of w.

The entropic forces on the walls of the slit can be determined by taking the derivative of
Fw with respect to w. The asymptotic formula for the force is given by

fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(z0 − 1)2 log(2z0 − 1)

(2z0 − 1)w+1
+ O((2z0 − 1)−3w/2), if z0 > 1;

π2

4w3
+

π4

48w5
+ O(w−7), if z0 = 1;

π2

w3
− 3π2z0

(1 − z0)w4
+ O(w−5), if z0 < 1.

(94)

26



J. Phys. A: Math. Theor. 41 (2008) 465003 J Alvarez and E J Janse van Rensburg

The force regimes in this model are characterized by both a long-range repulsive force when
z0 < 1, and a short-range repulsive force when z0 � 1. In the event that z0 < 1, the walk is
not pinned on the defect line, and its steric repulsion on the walls is long ranged. For z0 > 1
the walk is pinned on the defect line, and its effects on the walls decays exponentially with w;
it is short ranged.

4.3. A directed path in a slit with an off-centered defect line I

In this section we consider a variant of the model in section 4.2. Assume once again that
zw = 0 and a = b, so that p = q, but this time consider the case where wa = w and
wb = w + m for a non-negative integer m � w. This is a model where wa and wb are not
equal, but are comparable in size. The directed path starts at the origin and ends on the X-axis,
without reaching the AB-interface (because zw = 0). Therefore, the path is confined to a slit
of total width 2w + m − 2 with hard walls at Y = −(w + m) + 1 and Y = (w − 1).

In the limit that w → ∞, the denominator of g0 becomes 2p2z0−(1+p2). This is the same
as obtained in section 4.2 since a = b and zw = 0 in both models. Thus p0 = 1/

√
2z0 − 1.

To determine the asymptotics in this model, consider the three cases: z0 > 1, z0 = 1 and
z0 < 1.

If z0 > 1 then asymptotic expansion of p in powers of p0 is given by equation (86). To
determine C we substitute this ansatz for p into the denominator of g0 and compare coefficients
of p0 with powers less than 3w. This shows that

C = z0(z0 − 1)(1 + (2z0 − 1)−m)

(2z0 − 1)3/2
. (95)

This solution for C reduces to that in equation (87) if m → 0+. One may again determine a
critical value for t from this solution for p:

atc =
√

2z0 − 1

2z0
+

(z0 − 1)2(1 + (2z0 − 1)−m)

2z0(2z0 − 1)w+1/2
+ O(w(2z0 − 1)−3(w+m)/2). (96)

If z0 < 1 then we assume instead that p is approximated by

p = eiπ/(w+m)
(

1 +
c1

w
+

c2

w2
+

c3

w3
+

c4

w4
+ O(w−5)

)
. (97)

Determining ci as in section 4.2 gives

c1 = 0, c2 =
π i

(
z0 + m(z0 − 1) +

√
m2(z0 − 1)2 + z2

0

)
2(z0 − 1)

, (98)

and a complicated expression for c3 which we omit for brevity. The critical value of t in this
case can be determined as

atc = 1

2
+

π2

4w2
+

π2
(
z0 − m(z0 − 1) +

√
m2(z0 − 1)2 + z2

0

)
4(z0 − 1)w3

+ O(w−4). (99)

This reduces to equation (91) when m → 0+, as one would expect.
If z0 = 1 then the denominator of the generating function reduces to (p2 −1)(p4w+2m −1)

with solutions which are roots of unity. Determining tc from these roots shows that

atc = 1

2
+

π2

16w2
− π2m

16w3
− π2(5π2 + 36m2)

768w4
+ O(w−5). (100)
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These results for tc give us the asymptotic behavior of the free energy as

Fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log

(
2z0a√
2z0 − 1

)
− (z0 − 1)2(1 + (2z0 − 1)−m)

(2z0 − 1)w+1

+ O(w(2z0 − 1)−3(w+m)/2), if z0 > 1;

log(2a) − π2

8w2
+

π2m

w3
+ O(w−4), if z0 = 1;

log(2a) − π2

2w2

−
π2

(
z0 + m(1 − z0) +

√
z2

0 + m2(1 − z0)2
)

2(1 − z0)w3
+ O(w−4), if z0 < 1.

(101)

If w → ∞ in this model, then a model of a path at a defect line is obtained. The critical point
is at z0 = 1, and the path is pinned at the defect line if z0 > 1, while the path is delocalized
when z0 � 1. Note that setting m = 0 we recover the expressions in equation (93).

The asymptotic formula for the force is given by

fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z0 − 1)2 log(2z0 − 1)(1 + (2z0 − 1)−m)

(2z0 − 1)w+1

+ O((2z0 − 1)−3(w+m)/2), if z0 > 1;
π2

4w3
− 3π2m

8w4
+ O(w−5), if z0 = 1;

π2

w3
+

3π2
(
z0 + m(1 − z0) +

√
z2

0 + m2(1 − z0)2
)

2(1 − z0)w4
+ O(w−5), if z0 < 1.

(102)

There are two force regimes: in the event that z0 < 1, the walk is not pinned on the defect
line, and its steric repulsion on the walls is long ranged. For z0 > 1 the walk is pinned on the
defect line, and its effects on the walls decays exponentially with w; it is short ranged. This is
the same situation as in section 4.2, which is not surprising because even though in this model
the widths of the layers are not equal, they are comparable in size.

4.4. A directed path in a slit with an off-centered defect line II

In this section we consider another variant of the model in figure 16 and section 4.2. Assume
again that zw = 0 and a = b, so that p = q, but this time assume that wa = w and wb = mw

for some large integer m � 1. In this case the width of the layers are not comparable in size,
like they were in sections 4.2 and 4.3, in this case one layer is much larger than the other.
This is a model where the directed path starts at the origin and ends on the X-axis without
reaching the AB-interface (because zw = 0). The path is therefore confined to a slit of total
width (m + 1)w − 2 with hard walls at Y = −(mw − 1) and Y = (w − 1), and with a defect
line close to one wall.

In this model we proceed similarly to sections 4.2 and 4.3. First, consider the case where
z0 > 1. Then p0 is again given by equation (85) because we get the same denominator for the
generating function g0 as we did in section 4.2. This is due to the fact that a = b and zw = 0
in both models. Assuming that p is approximated by equation (86). One can determine C by
substitution of this ansatz for p into the denominator of g0 and comparing coefficients of p0

with powers less than that of 3w. This gives

C = z0(z0 − 1)

(2z0 − 1)3/2
. (103)
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Determining tc from p then shows that

atc =
√

2z0 − 1

2z0
+

(z0 − 1)2

2z0
√

2z0 − 1
2w+1 + O(w(2z0 − 1)−3w/2). (104)

If z0 < 1 then we assume instead that p is approximated by equation (89). Substituting
this ansatz for p into the denominator of g0, expanding in inverse powers of w, and solving
for ci gives the solutions

c1 = 0, c2 = iπz0

2m2(z0 − 1)
, (105)

and a complicated expression for c3 which we omit for brevity. Determining tc from these
results yields

atc = 1

2
+

π2

4m2w2
+

z0π
2

4m3(z0 − 1)w3
+ O(w−4). (106)

We note that this formula is valid for large w and m and that it breaks down as m → 1+ when
we compare it to equation (91); there is a factor of 2 discrepant in the O(w−3) term which is
the result of different contributions to the asymptotics by the two layers depending on whether
m = 1 or m 
= 1.

If z0 = 1 the denominator of the generating function g0 reduces to (p2 −1)(p2w(m+1) −1)

with solutions which are roots of unity. Determining tc from these roots shows that

atc = 1

2
+

π2

4(m + 1)2w2
+

5π4

48(m + 1)4w4
+ O(w−5). (107)

The free energy in this model can be determined from the asymptotic formulae for tc
above:

Fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

log

(
2z0a√
2z0 − 1

)
− (z0 − 1)2

(2z0 − 1)w+1
+ O(w(2z0 − 1)−3w/2), if z0 > 1;

log(2a) − π2

2(m + 1)2w2
− π4

12(m + 1)4w4
+ O(w−6), if z0 = 1;

log(2a) − π2

2m2w2
+

z0π
2

2(1 − z0)m3w3
+ O(w−4), if z0 < 1.

(108)

There is again a critical point at z0 = 1 if w → ∞. If z0 > 1, then the path is pinned in the
defect line, but if z0 � 1, the path is delocalized in the slab.

By taking the derivative of the free energy with respect to w we obtain the asymptotic
formula for the forces exerted on the walls of the slit

fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(z0 − 1)2 log(2z0 − 1)

(2z0 − 1)w+1
+ O((2z0 − 1)−3w/2), if z0 > 1;

π2

(m + 1)2w3
+

π4

3(m + 1)4w5
+ O(w−7), if z0 = 1;

π2

m2w3
− 3π2z0

2m3(1 − z0)w4
+ O(w−5), if z0 < 1.

(109)

In the event that z0 < 1, the walk is not pinned on the defect line, and its steric repulsion on
the walls is long ranged. For z0 > 1 the walk is pinned on the defect line, and its effects on
the walls decays exponentially with w; it is short ranged.
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Figure 17. A path in a layered lattice with an A-layer of width wa between two infinite B-layers.
This model is obtained when wb → ∞, as in section 4.5. The path interacts with the two interfaces
via z0 and zw respectively.

4.5. The case wb = ∞
This is a model of a path in a layered lattice with an A-layer of width wa between two B-layers
of infinite width, as illustrated in figure 17. This is a model of finite membrane (the A-layer)
in (for example) a lipid–water membrane system.

In this case the generating function is given by

g0 = z0(1 − zw(cs − co))

1 − (z0 + zw)cs + z0zw

(
c2
s − c2

o

) , (110)

cs = p2 − p2wa

(1 + p2)(1 − p2wa )
+

q2

1 + q2
, (111)

co = pwa (1 − p2)

(1 + p2)(1 − p2wa )
. (112)

Zeros in the denominator of g0 determine singular behavior in the generating function, and we
seek in particular the values of p which determine these zeros. First we determine the value
of p = p0 in the case where wa → ∞, and then expand p about p0. If wa → ∞, then g0

reduces to

lim
wa→∞ g0 = z0

1 − z0
(

p2

1+p2 + q2

1+q2

) . (113)

Singularities in this generating function are given by zeros of the denominator, that is when
p = p0, and p0 is a solution of

(1 + p2)(1 + q2) = z0(p
2(1 + q2) + q2(1 + p2)). (114)

Solving for p2 = p2
0 shows that

p2
0 = q2(z0 − 1) − 1

1 + q2 − z0(1 + 2q2)
. (115)

However, this is not an explicit expression for the solution of p0 in the wa → ∞ case. This is
because q depends on t and t depends on p, so q is an implicit function of p0 in the above. To
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determine p0, we use the facts that q = (1 −
√

(1 − 4b2t2))/2bt and that at = p/(1 + p2) to
determine q(p) ≡ q(t (p)) given by

q(p) = a(1 + p2) −
√

a2(1 + p2)2 − 4p2b2

2pb
. (116)

Substituting this into equation (115) we find the solution for p0 given by

p2
0 = − z2

0 − 4z0 + 2

2(2z0 − 1)(z0 − 1)
−

z0
(
z0b

2 ±
√

z2
0(a

2 + b2)2 + 4a2b2(1 − 2z0)
)

2a2(2z0 − 1)(z0 − 1)
. (117)

One may similarly solve for q2
0 :

q2
0 = − z2

0 − 4z0 + 2

2(2z0 − 1)(z0 − 1)
−

z0
(
z0a

2 ±
√

z2
0(a

2 + b2)2 + 4a2b2(1 − 2z0)
)

2b2(2z0 − 1)(z0 − 1)
. (118)

Observe that p0(a, b) = q0(b, a). In addition, if a = b = 1, then p0 reduces to 1/
√

2z0 − 1
and if a = 1 and b = 0, then p0 reduces to 1/

√
z0 − 1.

In the case that z0 is large, asymptotics can be determined generally for this model. The
denominator of the generating function (110) is too large to reproduce here. An asymptotic
expression for p is determined by assuming that

p = p0 + Cp
2wa

0 + O
(
p

3wa

0

)
(119)

where p0 is given in equation (117), and then determining C. Substituting this ansatz for p into
the denominator of g0 in equation (110), expanding in powers of p0, collecting terms, enables
one to compute C from the coefficients of powers of p0 less than 3wa . C is independent of wa

but for arbitrary values of a and b its expression is quite large. We reproduce it in the appendix
(see equation (A.1).

For small values of z0 and zw, the asymptotics are determined by assuming that

p = eiπ/wa

(
1 +

c1

wa

+
c2

w2
a

+
c3

w3
a

+ O
(
w−4

a

))
. (120)

For general values of a and b (assuming that a � b) the values of ci are determined by
substituting this ansatz for p into the denominator of equation (110). Expanding asymptotically
allows the determination of ci term by term. This shows that c1 = 0, while c2 and c3 are given
by complicated expressions. We reproduce c2 in the appendix (see equation (A.2).

4.5.1. The case z0 = zw = 1. If a � b in this model, then we assume that p can be
approximated by a root of unity and its asymptotics can be determined by assuming that p is
approximated by equation (120). Substituting z0 = z1 = 1 in ci shows that c1 = 0 and c2 is
given in the appendix (equation (A.2) with z0 = zw = 1:

c2 = 2π ia((b2 − 2a2)
√

a2 − b2 + 2a(a2 − b2))

(a2 − b2)(2a2 − b2 − 2a
√

a2 − b2)
. (121)

A more complicated expression for c3 can also be determined. The asymptotic behavior of
the critical value tc can then be obtained from at = p/(1 + p2):

atc � 1

2
+

π2

4w2
a

+
π2a((b2 − 2a2)

√
a2 − b2 + 2a(a2 − b2))

(a2 − b2)(2a2 − b2 − 2a
√

a2 − b2)w3
a

+ O
(
w−4

a

)
. (122)

For fixed b (this sets a zero point in the free energy in the model), it follows that tc < 1/2b for
all values of a > b.
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On the other hand, if b � a, then the critical value of t must be determined from the
denominator of the generating function. The roots of the denominator of the generating
function are given by solving for p in

(q2 − p2)pwa + p2q2 − 1 = 0, (123)

where q is an implicit function of p. This is done as in section 3.3. Write the last equation as

p −
(

p2q2 − 1

p2 − q2

) 1
wa

= 0, (124)

substitute for q by using equation (116). Assume that p is approximated in equation (120) and
determine ci by expanding asymptotically in wa , and solving for ci term by term. This shows
that

c0 = b ± √
b2 − a2

a
(125)

and c1 = −iπc0/2, c2 = −π2c0/8, c3 = iπ3c0/48 and c4 = π4c0/384. The resulting value
of tc is given by

atc = a

2b
. (126)

Finally, if a � b, then we use the approximation bp = aq and the arguments in
section 3.3 to observe that

btc �
√

ab

a + b
. (127)

These are similar results to that obtained in section 3.3 (see equation (48), and the same
comments made there apply to this case. Observe that there are no dependencies on w in
these results in equations (126) and (127), except that with increasing wa the regime given by
equation (127) decreases in size, as argued in section 3.3.

Generally, for b � a the path delocalizes in the infinite B-layer, and for b � a it
delocalizes over both the B- and the A-layers. If b � a the path will localize to the A-layer.

In other words, the critical value of t in the large a and in the large b regimes are determined
by two different asymptotic regimes of the generating function. These correspond to a phase
where paths are localized in the A-layer, and a phase where paths are delocalized in the B-layer.
By comparing equations (122) and (127), one can determine asymptotically (for large a and
b) the location of the crossover regime in the ab-plane. If we assume that for large values of
wa the crossover regime is given by bc(a) = ĉ0 + ĉ1/wa + ĉ2/w

2
a + · · ·, then ĉi can again be

determined by equating equations (122) and (127), expanding asymptotically in wa and then
analyzing term by term. Simplification of the results show that

bc(a) � a

(
1 − π2

2w2
a

)
+ O

(
w−3

a

)
. (128)

Observe that bc(a) → a in the limit wa → ∞, as one would expect.
The free energy of this model can be determined from the values of tc obtained above:

Fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log 2b, if b � bc(a);

log b − log

( √
ab

a + b

)
, if b � bc(a);

log 2a − π2

2w2
a

− 2π2a((b2 − 2a2)
√

a2 − b2 + 2a(a2 − b2))

(a2 − b2)(2a2 − b2 − 2a
√

a2 − b2)w3
a

+ O
(
w−4

a

)
, if b < bc(a).

(129)
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Figure 18. A path in a bilayered lattice with hard walls, obtained by setting z0 = 1 and zw = 0 in
figure 17. The central defect line is the BA-interface between the two layers.

In the wa → ∞ limit, bc(a) → a and Fw → min{log 2a, log 2b}, as one would expect.
For finite values of wa the free energy is either determined by paths in the infinite B-layer if
b � bc(a), or crosses over into the more complicated expressions above for b < bc(a).

The force exerted on the interfaces can be determined by taking the derivative of the free
energy with respect to wa:

fw �

⎧⎪⎨
⎪⎩

0, if b > bc(a);
π2

w3
a

+
6π2a((b2 − 2a2)

√
a2 − b2 + 2a(a2 − b2))

(a2 − b2)(2a2 − b2 − 2a
√

a2 − b2)w4
a)

+ O
(
w−5

a

)
, if b < bc(a).

(130)

In this model there are two phase and force regimes. If b < bc(a) the path exerts a long-ranged
repulsive force on the walls of the A-layer for finite values of wa , and if wa → ∞ limit there
is a localization of the path at the A-layer. For values of b > bc(a) there is a zero net force on
the walls of the A-layer for finite values of wa , and if wa → ∞ the path is delocalized from
the A-layer (it explores the B-layer).

4.5.2. The case z0 = 1 and zw = 0. Setting zw = 0 introduces a hard wall in the model,
which is illustrated in figure 18. If b > a, the model will again be dominated by paths in the
infinite B-layer (below the X-axis). If a � b, an asymptotic expansion for p can again be
determined by using the ansatz in equation (120). In this case c1 = 0 and c2 is given in the
appendix (equation (A.2). When z0 = 1 and zw = 0, then c2 is given by

c2 = π ia(2a
√

a2 − b2 + 2a2 − b2)

(
√

a2 − b2(b2 − 2a2) + 2a(a2 − b2))
. (131)

The critical value of t can be determined to be

atc = 1

2
+

π2

4w2
a

+
π2a(2a

√
a2 − b2 + 2a2 − b2)

2(
√

a2 − b2(b2 − 2a2) + 2a(a2 − b2))w3
a

+ O
(
w−4

a

)
. (132)

To estimate tc for the case where b � a, we use the same arguments as in the previous
section. The roots denominator of the generating function are given by solving for q in

(p2 − q2)p2wa + p2q2 − 1 = 0, (133)

where p is an implicit function of q. Arguing as above shows that

atc = a

2b
(134)

in this regime.
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If b � a, we again approximate bp ≈ aq, and use the arguments above. This shows that

btc � ab

a2 + b2
. (135)

This is a similar result to that obtained in sections 3.3 and 4.5.1 (see equations (48) and (127),
and the same comments made there apply to this case.

The curve bc(a) describing the crossover regime can again be determined by equating
equations (132) and (135). The result is

bc(a) � a

(
1 − π2

2w2
a

)
+ O

(
w−3

a

)
. (136)

Observe that bc(a) � a as wa → ∞, as one would expect. This is the same crossover behavior
observed in the previous section.

The free energy of this model can be determined from the values of tc:

Fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

log 2b, if b � bc(a);
log b − log

(
ab

a2 + b2

)
, if b � bc(a);

log(2a) − π2

2w2
a

− π2a(2a
√

a2 − b2 + 2a(a2 − b2))

((b2 − 2a2)
√

a2 − b2 + 2a(a2 − b2))w3
a

+ O
(
w−4

a

)
, if b < bc(a).

(137)

For finite values of wa the free energy is either determined by paths in the infinite B-layer if
b � bc(a), or crosses over into the more complicated expressions above for b < bc(a).

The force exerted on the interfaces can be determined by taking the derivative of the free
energy with respect to wa:

fw �

⎧⎪⎨
⎪⎩

0, if b > bc(a);
π2

w3
a

+
3π2a(2a

√
a2 − b2 + 2a2 − b2)

((b2 − 2a2)
√

a2 − b2 + 2a(a2 − b2))w4
a

+ O
(
w−5

a

)
, if b < bc(a).

(138)

In this model there are again two phases and force regimes. If b < bc(a) the path exerts a
long-ranged repulsive force on the walls of the A-layer for finite values of wa , and if wa → ∞
limit there is a localization of the path at the A-layer. For values of b > bc(a) there is a
zero net force on the walls of the A-layer for finite values of wa , and if wa → ∞ the path is
delocalized from the A-layer (it explores the B-layer).

4.5.3. The case a = b. In this section we consider the model as a function of the adsorption
parameters z0 and zw, which is depicted in figure 17 with a = b. There are several regimes to
be considered, depending on whether the adsorption parameters are large or small. We shall
assume that z0 � zw in all cases; interchanging z0 and zw will give expressions for the case
zw > z0.

In the case that z0 is large, asymptotics are determined by assuming that p is given
by equation (119) with p0 is given in equation (117) with a = b. Then C is given by
equation (A.1) in the appendix with a = b. If a = b, z0 > zw, and z0 > 1, then the results are
p0 = 1/

√
2z0 − 1 and

p � 1√
2z0 − 1

− z2
0(zw − 1)(z0 − 1)

(z0 − zw)(2z0 − 1)3/2

(
1

2z0 − 1

)wa

+ O(wa(2z0 − 1)−2wa ). (139)

If a = b and z0 = zw > 1 the asymptotics change to

p � 1√
2z0 − 1

− z0(z0 − 1)

(2z0 − 1)3/2

(
1

2z0 − 1

)wa/2

+ O(wa(2z0 − 1)−wa ). (140)
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Asymptotics for the critical value of t can be determined to be

atc �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2z0 − 1

2z0
− (zw − 1)(z0 − 1)2

2(z0 − zw)
√

2z0 − 1

(
1

2z0 − 1

)wa

+ O(wa(2z0 − 1)−2wa ), if a = b, z0 > zw and z0 > 1;
√

2z0 − 1

2z0
− (z0 − 1)2

2z0
√

2z0 − 1

(
1

2z0 − 1

)wa/2

+ O(wa(2z0 − 1)−wa ), if a = b, z0 = zw > 1.

(141)

For small values of z0 and zw, the asymptotics are determined by assuming that p is given
by equation (120), with c1 = 0 and c2 given in equation (A.2) in the appendix. Putting a = b

gives

c2 = π i(2z0zw − z0 − zw)

2(1 − z0)(1 − zw)
. (142)

Determining tc from p gives the asymptotic formula

atc � 1

2
+

π2

4w2
a

+
π2(2z0zw − z0 − zw)

4(1 − z0)(1 − zw)w3
a

+ O
(
w−4

a

)
, if z0 < 1 and zw < 1. (143)

If z0 = 1, zw < z0 and a = b, then the free energy can be computed by putting a = b and
taking the limit z0 → 1 in equation (A.2) using L’Hospital’s rule to obtain

atc � 1

2
+

π2

4w2
a

+
π2(2 − 3zw)

2(1 − zw)w3
a

+ O
(
w−4

a

)
, if z0 = 1 and zw < 1. (144)

Finally, if z0 = zw = 1, the critical value of t is given by tc = 1/2a, as seen in equation (127).
These results can be used to determine the free energy in this case:

Fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log

(
2z0a√
2z0 − 1

)
+

z0(zw − 1)(z0 − 1)2

(z0 − zw)(2z0 − 1)

×
(

1

2z0 − 1

)wa

+ O(wa(2z0 − 1)−2wa ), if a = b, z0 > zw and z0 > 1;

log

(
2z0a√
2z0 − 1

)
+

(z0 − 1)2

2z0 − 1

(
1

2z0 − 1

)wa/2

+ O(wa(2z0 − 1)−wa ), if a = b, z0 = zw � 1;

log 2a − π2

2w2
a

− π2(2z0zw − z0 − zw)

2(1 − z0)(1 − zw)w3
a

+ O
(
w−4

a

)
, if a = b, z0 < 1 and zw < 1;

log 2a − π2

2w2
a

− π2(2 − 3zw)

(1 − zw)w3
a

+ O
(
w−4

a

)
, if a = b, z0 = 1 and zw < 1.

(145)

There are numerous phases in this model in the wa → ∞ limit. For z0 > 1 the path is pinned
at the AB-interface (provided that z0 > zw), and similarly for zw > 1. If z0 < 1 and zw < 1,
then the path is in an expanded phase delocalized over the lattice. This does not change when
z0 = 1 and zw < 1; the path remains delocalized.
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Figure 19. The phase diagram of the model in section 4.5.3, with a = b = 1 in figure 17. In this
model zc = 1. The phase boundaries are denoted by the solid lines and separate a desorbed phase
for z0 < 1 and zw < 1. If z0 > 1 and z0 > zw , then the path is adsorbed on the BA-interface, and
if zw > 1 and zw > z0, then the path is adsorbed on the AB-interface. If both zw > 1 and z0 > 1,
then there is a short-ranged attractive (SRA) force between the interfaces. When zw → 1+ for
z0 > 1 the force vanishes (along the dashed lines in figure 19) and then changes sign to become
repulsive and short ranged (SRR). Finally, for both z0 < 1 and zw < 1, the forces are long ranged
and repulsive (LRR).

The force exerted by the path on the bounding walls of the A-layer are obtained by taking
the derivative of the free energy with respect to wa:

fw �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−z0(zw − 1)(z0 − 1)2 log(2z0 − 1)

(z0 − zw)(2z0 − 1)

(
1

2z0 − 1

)wa

+ O((2z0 − 1)−2wa ), if a = b, z0 > zw and z0 > 1;

− (z0 − 1)2 log(2z0 − 1)

2(2z0 − 1)

(
1

2z0 − 1

)wa/2

+ O((2z0 − 1)−wa ), if a = b, z0 = zw � 1;
π2

w3
a

+
3π2(2z0zw − z0 − zw)

2(1 − z0)(1 − zw)w4
a

+ O
(
w−5

a

)
, if a = b, z0 < 1 and zw < 1;

π2

w3
a

+
3π2(2 − 3zw)

(1 − zw)w4
a

+ O
(
w−5

a

)
, if a = b, z0 = 1 and zw < 1,

(146)

where we note that the expressions are symmetric in zw and z0. In other words, if zw > z0

instead, then we exchange z0 ↔ zw to obtain the expressions for the force and for the free
energy above. Observe the zero force lines give by z0 = 1 and zw � 1, and zw = 1 and
z0 < 1.

The force and phase diagram of this model is given in figure 19. There are three phases in
the model in the limit that wa → ∞: a desorbed phase for small values of z0 < 1 and zw < 1,
and two adsorbed or pinned phases when either z0 > 1 and z0 > zw or zw > 1 and zw > z0.
The phase boundaries are denoted by the solid lines in figure 19.

For finite values of wa the path exerts a force on the two interfaces separating the A-layer
from the B-layers. If both zw > 1 and z0 > 1, then the paths are pinned on the interfaces and
equation (146) indicates a short-ranged attractive (SRA) force between the interfaces due to
the pinning of paths on both interfaces. When zw → 1+ for z0 > 1 or zw > 1 and z0 → 1+

these forces vanish (along the dashed lines in figure 19) and then changes sign to become
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repulsive and short ranged (SRR). In this regime the path is pinned on one interface but is
repelled by the other, and the resulting forces are repulsive and short ranged. Finally, for both
z0 < 1 and zw < 1 the paths are desorbed in the A-layer. The forces are long ranged and
repulsive (LRR).

4.5.4. The case b = 0. The case b = 0 introduces a hard wall on the AB- and BA-interfaces
and the model reduces to the model in [3] and section 4.1. It can be verified that the solution
here gives the same expressions.

5. Conclusions

In this paper we examined the properties of a directed path model of a polymer in a layered
environment composed of two alternating layers. The model has a rich thermodynamic
structure, with several distinct phases, including localized, adsorbed or pinned and delocalized
phases which give rise to several long-ranged or short-ranged attractive or repulsive force
regimes.

We solved for the generating function of the general model in section 4, and for a simpler
case (the ‘diagonal model’) in section 3. Exact solutions for small values of the widths of the
layers are given in section 2.2. Even for these cases (small values of the width in the diagonal
model) the exact solutions increase quickly in complexity, and for w = 3 the free energy of
the model can only be determined by solving for the roots of a cubic.

While we give general expressions for the generating function of these models in both the
diagonal and general cases in sections 3 and 4, determining free energies and phase regimes
cannot in general be done exactly, and only asymptotic regimes were identified for large values
of the width. In the diagonal model, we determined asymptotics for the free energy in several
cases, including the cases that b = 0 in section 3.1 (this is the slit model), and a = b in
section 3.2. These models are characterized by two force regimes, namely, a long-ranged
repulsive force on the interfaces for small values of the parameter z, and a short-ranged
attractive force for large values of z. See equations (33) and (36). The effects of the
parameters a and b on the free energy are examined in section 3.3. We identified two distinct
cases, namely a ≈ b and the cases that a � b or a � b. The free energy is approximated in
equation (49).

Asymptotics for the general model in section 4 have only been done in a number of
special cases. A notable case is presented in section 4.1, which is a directed path in a slit. Our
solution reduces to that in [3], and we verify asymptotics of the free energy and force regimes
by showing that we obtain the same expressions given in [3].

We proceeded by considering models of paths in a slits with centered and off-centered
defect lines in sections 4.2, 4.3 and 4.4. In these models all forces are repulsive, but do fall
into two regimes, namely, a long-ranged repulsive force on the walls of the slit for small values
of z0, and a short-ranged repulsive force for large values of z0.

In section 4.5, a model with a finite A-layer between two infinite B-layers is examined as
a model of a lipid–water membrane system. This model is obtained by wb → ∞. We give
expressions for the general asymptotics in this case and present several subcases. In particular,
we develop asymptotics for the models that z0 = zw = 1 and z0 = 1 with zw = 0, and for
the cases a = b and b = 0 (this last case reduces the model again to a path in a slit). These
models exhibit a rich structure, and attractive and repulsive, and long- and short-ranged force
regimes were uncovered. Further generalizations of this model to an ABC-layered model with
an infinite width C-layer is possible, and is left for future exploration.
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Appendix A. Expressions for C in equation (119) and c2 in equations (120)

The expression for C in the asymptotic formula for p in equation (119) is given by

C = N1

D1
, (A.1)

where

N1 = (
17z0

2zw
2 − 26z0

2zw − 26z0zw
2 + 9z0

2 + 44z0zw + 9zw
2 − 16z0

− 16zw + 6
)
a4p0

11 +
((

37z0
2zw

2 − 82z0
2zw − 82z0zw

2 + 35z0
2

+ 172z0zw + 35zw
2 − 72z0 − 72zw + 30

)
a4 +

(
16b2z0

2zw
2

− 16b2z0
2zw − 16b2z0zw

2 + 6b2z0
2 + 6b2zw

2)a2)p0
9 +

(
6b4z0

2zw
2

+
(
32z0

2zw
2 − 100z0

2zw − 100z0zw
2 + 52z0

2 + 264z0zw

+ 52zw
2 − 128z0 − 128zw + 60

)
a4 +

(
36b2z0

2zw
2 − 40b2z0

2zw

− 40b2z0zw
2 + 18b2z0

2 + 18b2zw
2)a2)p0

7 +
(
6b4z0

2zw
2

+
(
16z0

2zw
2 − 60z0

2zw − 60z0zw
2 + 36z0

2 + 200z0zw + 36zw
2

− 112z0 − 112zw + 60
)
a4 +

(
20b2z0

2zw
2 − 32b2z0

2zw − 32b2z0zw
2

+ 18b2z0
2 + 18b2zw

2)a2)p0
5 +

((
5z0

2zw
2 − 18z0

2zw − 18z0zw
2

+ 11z0
2 + 76z0zw + 11zw

2 − 48z0 − 48zw + 30
)
a4 +

(−8b2z0
2zw

− 8b2z0zw
2 + 6b2z0

2 + 6b2zw
2)a2)p0

3 +
(
z0

2zw
2 − 2z0

2zw − 2z0zw
2

+ z0
2 + 12z0zw + zw

2 − 8z0 − 8zw + 6
)
a4p0,

D1 = (
120z0

2zw
2 − 180z0

2zw − 180z0zw
2 + 60z0

2 + 270z0zw + 60zw
2

− 90z0 − 90zw + 30
)
a4p0

10 +
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168z0
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2 − 392z0
2zw − 392z0zw

2
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)
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(
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2zw
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2zw − 84b2z0zw
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2 + 28b2zw
2)a2)p0

8

+
(
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2zw
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(
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2
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+
(
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(
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This shows that C is a rational function of p0, its numerator a polynomial of degree 12 in
p0 and its denominator a polynomial of degree 10 in p0, both with coefficients which are
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quadratic in z0 and zw multiplied by even powers of a less than or equal to 4. In each case p0

is given by

p2
0 = − z2

0 − 4z0 + 1

2(2z0 − 1)(z0 − 1)
−

z0
(
2z0b

2 ±
√

z2
0(a

2 + b2)2 + 4a2b2(1 − 2z0)
)

2a2(2z0 − 1)(z0 − 1)
.

The solution for c2 in equation (120) is given as

c2 = Nc2

Dc2
(A.2)

where

Nc2 = 4π ia3(a +
√

a2 − b2)(3z0zw − zw − z0)

− 2π i(4z0zw − z0 − zw)a2b2 + 2π iz0zwab2
√

a2 − b2,

and

Dc2 = 6a3(a −
√

a2 − b2)(3z0z2 − 2z0 − 2zw) + 8a3(a −
√

a2 − b2)

− a2b2(15z0zw − 8z0 − 8zw) + 2ab2
√

a2 − b2(3z0zw − z0 − zw)

− 4a2b2 + b4z0zw.

References

[1] Brak R, Iliev G K, Rechnitzer A and Whittington S G 2007 Motzkin path models of long chain polymers in slits
J. Phys. A: Math. Theor. 40 4415–37

[2] Brak R, Essam J M and Owczarek A L 1998 New results for directed vesicles and chains near an attractive wall
J. Stat. Phys. 93 155–92

[3] Brak R, Owczarek A L, Rechnitzer A and Whittington S G 2005 A directed model of a long chain polymer in
a slit with attractive walls J. Phys. A: Math. Gen. 38 4309–25

[4] De’Bell K and Lookman T 1993 Surface phase transitions in polymer systems Rev. Mod. Phys. 65 87–114
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